Validation of Quantitative Trait Loci Associated with Freeze Tolerance in St. Augustinegrass

S.E. Graham¹, J.A. Kimball², X. Yu¹, T.D. Tuong³, Y. Zheng⁴, D.P. Livingston³, S.R. Milla-Lewis¹

¹Crop and Soil Sciences, North Carolina State University, Raleigh, NC. ²Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN. ³ U.S. Department of Agriculture, Raleigh, NC.

⁴ College of Forestry, Henan University of Science and Technology

Background

- St. Augustinegrass (Stenotaphrum secundatum [Walt.] Kuntze) has good shade tolerance, aggressive growth habit, and grows in a wide range of soil pH. However, a general lack of freeze tolerance has prevented more widespread use of this warm-season grass.
- The industry standard for cold tolerance 'Raleigh' was released in the 1980s.
- The first complete linkage map of St. Augustinegrass was developed using a mapping population of 'Raleigh' x 'Seville'¹. QTL on linkage groups 1, 3, 6 and 9 were identified for turf quality and freeze related traits¹.
- Yu et al. (2018) developed a high density linkage map with 2871 SNPs².

Figure 1 (right): 'Raleigh' x Seville' map Linkage Group 9¹ and genomic regions associated with turf quality and freeze tolerance. Figure 2 (above): St. Augustinegrass plots in

Raleigh, NC 2012

Objectives:

- 1. Use the high density SNP map to identify finer QTL associated with freeze tolerance in 'Raleigh' x 'Seville'
- 2. Develop a linkage map and identify freeze tolerance QTL for 'Raleigh' x 'Raleigh'
- 3. Compare QTL to validate candidate regions for marker assisted selection

Materials and Methods

Mapping Population:

 F₁ population (115 individuals) of 'Raleigh' x 'Raleigh' ('RxR') genotyped using 120 SSR markers.

Phenotyping:

- For lab freeze evaluations:
 - Acclimation treatments were no cold acclimation (NCA) or cold acclimation (CA) for 1 week at 13°C followed by 1 week at 3°C.
 - Freezing treatments were at both -3°C and -4°C for 10 hours.
 - Visual ratings were taken on surviving green tissue (SGT) and regrowth (RG) at weeks 3 and 6 post freezing.
- For field evaluations:
 - 3'x3' plots were planted at the Lake Wheeler Turf Field Lab (Raleigh, NC).
 - Spring green up (SGU) and winterkill (WK) were scored on a 1-9 scale in the spring of 2013-2015.

Linkage Mapping of RxR Population:

- Linkage mapping was completed in R Studio using the r/Onemap package².
- Markers were sorted into linkage groups (LG) using a default ~4.5 LOD score.
- 10 LGs were generated, one small LG (2 markers) was dropped. The order of markers within LGs was determined using the Kosambi and ripple functions.

QTL Identification:

- Both 'RxR' map and 'RxS' map from Yu et al. were used for QTL mapping²
- QTL mapping of least square means was done with MVQTLCIM³.
- 1000 permutations were conducted to select genome wide logarithm of odds thresholds for significance ($\alpha = 0.05$).

Results & Discussion

- Significant variation observed among genotypes for freeze response both in the field and in freeze tests.
- mapped into nine LGs.
- The RxR map spans 1650cM with an average distance between markers of about 14cM.
- 42 QTL identified in 'RxS' analysis and 4 QTL identified in 'RxR' analysis.

Significant QTL identified in 'RxR' population											
Trait	LG	Peak Position	Position Interval	LOD	LOD	Nearest	Environment				
		(cM)	(cM)		Threshold	Marker					
SGT	3	52.341	52.341	17.661	17.633	*SSR3677	CA4				
RG	9	108.76676	108.767-108.877	30.555	23.047	SSR17841	NCA3				
RG	5	4.01	4.01	23.087	23.047	SSR1952	NCA3				
RG	1	145.498	145.498	24.631	23.047	SSR15639	NCA3				

Most significant QTL by LG identified in 'RxS' population											
Trait	LG	Peak Position	Position Interval	LOD	LOD	Nearest	Environment				
		(cM)	(cM)		Threshold	Marker					
WK	1	48.306	40.529-52.366	7.755	3.830	SNP30999	Across				
RG	2	82.673	77.135-87.919	9.426	3.530	SNP12185	Across				
SGT	3	102.613	97.928-107.176	5.964	3.715	SNP9396	Across				
WK	4	80.838	79.344-80.838	8.535	3.830	SNP18259	Across				
WK	5	70.846	70.846-71.084	8.600	3.879	SNP54683	Across				
WK	6	53.792	53.401-58.619	7.403	3.830	SNP8446	Across				
WK	7	88.24	87.541-88.24	4.838	3.879	SNP7974	Across				
RG	8	70.514	68.9-75.22	4.683	3.494	SNP18492	Across				
SGU	8	0.01	0.01	4.253	3.762	SNP37566	Across				
WK	8	0.01	0.01	4.112	3.879	SNP37566	Across				
WK	9	39.975	39.975-40.63	6.100	3.879	SNP55431	Across				
SGU	9	40.63	39.975-40.63	4.733	3.762	SNP55431	Across				

Preliminary Conclusions

- There are many small effect QTL for freeze related traits and different freeze tolerance evaluations identified different QTL.
- QTL for WK and SGU are co-localized on LG's 8 and 9.
- QTL on LGs 5 and 9 have been implicated through three different analyses and make good potential targets for marker assisted selection.
- QTL analysis of independent environments for the 'RxS' population is underway and may identify QTL that are confounded across environments.
- Ongoing work:
- Reference genome for 'Raleigh'
- Transcriptomic analysis with RNA-Seq will help confirm which regions of the genome play an integral role in freeze tolerance and acclimation.

References

- 1. Kimball, J. A., Tuong, T. D., Arellano, C., Livingston, David P.,, III, & Milla-Lewis, S. R. (2018). Linkage analysis and identification of quantitative trait loci associated with freeze tolerance and turf quality traits in st. augustinegrass. Molecular Breeding, 38(5), 67. doi:10.1007/s11032-018-0817-y
- 2. Yu, X., J.A. Kimball, and S. Milla-Lewis. 2018. High density genetic maps of st. augustinegrass and applications to comparative genomic analysis and QTL mapping for turf quality traits. BMC Plant Biology 18:346.
- 3. Margarido, G. R. A., Souza, A. P. and Garcia, A. A. F. (2007) OneMap: software for genetic mapping in outcrossing species. Hereditas 144: 78-79.
- 4. Fenxiang Liu, Chunfa Tong*, Shentong Tao, Jiyan Wu, Yuhua Chen, Dan Yao, Huogen Li, Jisen Shi. 2017. MVQTLCIM: composite interval mapping of multivariate traits in a hybrid F1 population of outbred species. BMC Bioinformatics, 18:515